

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

A general quadratic programming method for the optimisation of genetic contributions using interior point algorithm

R Pong-Wong & JA Woolliams

Introduction

- Inbreeding is a risk and it needs to be controlled
- Optimum contribution selection is an effective tool to control inbreeding (in directional selection or conservation schemes)
 But... practical intake is low
- Methods need to be improved to exploit dense SNP genotyping
 - Coancestry at different genomic regions constrained separately rather than average

Methods for Optimising Contribution Selection (OCS)

- Relaxed Parameter Space (AKA Langrange multiplier method)
 Meuwissen, 1997, Grundy et al, 1998
- Evolutionary algorithms
 - Kinghorn et al, 2002
- Semidefinite programming

 Pong-Wong and Woolliams, 2008

Objective

Propose a new method for OCS

formulated as a quadratic programming

which can accommodate for multiple constraints on coancestry

Genetic Contribution

- Genetic contribution (c_i):
 - Proportion of genetic material an ancestor *i* passes to the descendant population
 - $-c_i \alpha$ number of offspring parent *i* has.

- Expected genetic gain and Inbreeding are functions of genetic contributions
 - g = c'e
 - F = c'Gc/2

- **e** = ebv
- **G** = genetic relationship (NRM/GRM)

The OCS problem

- Optimise contribution of candidates
- Objective:
 - Maximise Genetic Gain
 - (or maximise genetic diversity)
- Constrains
 - Coancestry increases at a pre-set rate
 - One or more coancestry restrictions
 - Valid bound of contributions

```
С
 e'c
c'Gc/2
\mathbf{c}'\mathbf{G}_{j}\mathbf{c} \leq 2\mathbf{F}_{j}^{*}, \ j = 1, p
s'c = 0.5 d'c = 0.5
u \leq c \leq \overline{u}
```


Conditions for optimality

$$\begin{aligned}
\nabla_{\mathbf{c}}h(\mathbf{c}) &- \lambda_{s}\mathbf{s} - \lambda_{d}\mathbf{d} - \lambda_{\underline{u}} + \lambda_{\overline{u}} + + \Sigma_{j=1}^{p}(\lambda_{j}\mathbf{G}_{j}\mathbf{c}) &= \mathbf{0} \\
& 0.5 - \mathbf{s'c} &= 0 \\
& 0.5 - \mathbf{d'c} &= 0 \\
& \mathbf{y}_{u} - \mathbf{c} + \underline{u} &= \mathbf{0} \\
& \mathbf{y}_{\overline{u}} + \mathbf{c} - \overline{u} &= \mathbf{0} \\
& \Sigma_{j=1}^{p}(\mathbf{y}_{j} + \mathbf{c'}\mathbf{G}_{j}\mathbf{c} - 2\mathbf{F}_{j}^{*}) &= 0_{j} & j = 1, p \\
& \left(\lambda_{\underline{u}} * y_{\underline{u}}\right)_{i} &= 0_{i} & i = 1, n \\
& \left(\lambda_{\overline{u}} * y_{\overline{u}}\right)_{i} &= 0_{i}, & i = 1, n \\
& \left(\lambda_{j} * y_{j}\right) &= 0_{j}, & j = 1, p \\
& \left(\lambda_{\underline{u}}, y_{\underline{u}}\right) &\geq \mathbf{0} & i = 1, n \\
& \left(\lambda_{\overline{u}}, y_{\overline{u}}\right) &\geq \mathbf{0}, & i = 1, n \\
& \left(\lambda_{j}, y_{j}\right) &\geq 0, & j = 1, p
\end{aligned}$$

 λ = Lagrangian multipliers. y = slack variables

Conditions for optimality

$$R(\boldsymbol{\theta}) = \begin{cases} \nabla_{\mathbf{c}}h(\mathbf{c}) - \lambda_{s}\mathbf{s} - \lambda_{d}\mathbf{d} - \lambda_{\underline{u}} + \lambda_{\overline{u}} + \Sigma_{j=1}^{p}(\lambda_{j}\mathbf{G}_{j}\mathbf{c}) \\ 0.5 - \mathbf{s}'\mathbf{c} \\ 0.5 - \mathbf{d}'\mathbf{c} \\ \mathbf{y}_{u} - \mathbf{c} + \underline{u} \\ \mathbf{y}_{\overline{u}} + \mathbf{c} - \overline{u} \\ \mathbf{y}_{\overline{u}} + \mathbf{c} - \overline{u} \\ \Sigma_{j=1}^{p}(\mathbf{y}_{j} + \mathbf{c}'\mathbf{G}_{j}\mathbf{c} - 2\mathbf{F}_{j}^{*}) & j = 1, p \\ (\lambda_{\underline{u}} * y_{\underline{u}})_{i} & i = 1, n \\ (\lambda_{\overline{u}} * y_{\overline{u}})_{i} & i = 1, n \\ (\lambda_{j} * y_{j}) & j = 1, p \end{cases} = \{\mathbf{0}\}$$

 $\begin{pmatrix} \lambda_{\underline{u}}, y_{\underline{u}} \\ (\lambda_{\overline{u}}, y_{\overline{u}}) \\ (\lambda_j, y_j) \end{pmatrix}$

The OCS problem

$$R(\boldsymbol{\theta}) = \begin{bmatrix} \nabla_{\mathbf{c}}h(\mathbf{c}) - \lambda_{s}\mathbf{s} - \lambda_{d}\mathbf{d} - \lambda_{\underline{u}} + \lambda_{\overline{u}} + \Sigma_{j=1}^{p}(\lambda_{j}\mathbf{G}_{j}\mathbf{c}) \\ 0.5 - \mathbf{s}'\mathbf{c} \\ 0.5 - \mathbf{d}'\mathbf{c} \\ \mathbf{y}_{u} - \mathbf{c} + \underline{u} \\ \mathbf{y}_{\overline{u}} + \mathbf{c} - \overline{u} \end{bmatrix} = 1, p = [\mathbf{0}]$$

$$E_{j=1}^{p}(\mathbf{y}_{j} + \mathbf{c}'\mathbf{G}_{j}\mathbf{c} - 2F_{j}^{*}) = 1, p = [\mathbf{0}]$$

$$\frac{(\lambda_{\underline{u}} * y_{\underline{u}})_{i}}{(\lambda_{\overline{u}} * y_{\overline{u}})_{i}} = 1, n = [\mathbf{0}]$$

$$Find \qquad : \mathbf{\theta} = (\mathbf{c}, \boldsymbol{\lambda}, \mathbf{v})$$

Such as : $R(\theta) = 0$

Solution = root of $R(\theta)$

マディアノ

OCS=

Royal (Dick) S Veterinary Stu BBSRC biostence for (the fully ey)

The Newton Rapson method

- $\tilde{\boldsymbol{\Theta}}$ is the root of the function $R(\tilde{\boldsymbol{\Theta}})=\mathbf{0}$
- Initial estimate: $\boldsymbol{\theta}_i$
- A better estimate: $\mathbf{\theta}_{i+1} = \mathbf{\theta}_i + \alpha \Delta_i$
 - $[\mathbf{R}'(\mathbf{\theta}_i)d\mathbf{\theta}_i]\Delta_i = -\mathbf{R}(\mathbf{\theta}_i)$

The Newton Rapson method

Convergence problems with NR

• Sometimes with NR: θ_{i+1} is invalid or not better than θ_i

Interior Point algorithm: The Mehrotra's method

- Update of θ using a perturbed Newton Rapson Step
- $[R'(\mathbf{\theta}_i)d\mathbf{\theta}_i]\Delta_i = (-R(\mathbf{\theta}_i) + R^*)$ - $R^* = \text{central path}$
- ROSLIN THE UNIVERSITY of EDINBURGE Royal (Dick) School of Veterinary Studies

$R(\theta)$ and R^*

- μ =mean($\lambda * y$) : $\mu \to 0$, when $\theta \to$ optimum
- $\mu_{i+1} < \mu_i$: θ_{i+1} is better solution than θ_i
- τ defined by relative value between μ_{i+1} and μ_i

 R^* = central path

The Newton Rapson method

The interior point: The Mehrotra's method

Testing the performance of the QP method

- Small example
 - Example 2 from Pong-Wong and Woolliams (2008)

- Large example
 - 200 candidates
 - GRMs on each chromosome
 - constrains on coancestry of multiple genomic regions

Small example

QP finds the true optimum solution

Large Example: two restrictions on coancestry

		Results in optimum solution		
Restriction on F*		Observed F		Genetic gain
chr 1	chr 2	chr 1	chr 2	
0.63	0.58	0.59	0.58	1.85
0.64	0.59	0.60	0.59	1.92
0.65	0.60	0.61	0.60	1.97
0.66	0.61	0.62	0.61	2.01
0.67	0.62	0.63	0.62	2.04
0.68	0.63	0.64	0.63	2.07
0.69	0.64	0.66	0.64	2.09
0.70	0.65	0.67	0.65	2.10
0.58	0.63	0.58	0.58	1.82
0.59	0.64	0.59	0.59	1.89
0.60	0.65	0.60	0.60	1.94
0.61	0.66	0.61	0.61	1.98
0.62	0.67	0.62	0.61	2.02
0.63	0.68	0.63	0.62	2.04
0.64	0.69	0.64	0.63	2.06
0.65	0.70	0.65	0.64	2.08

Solutions are the same as SDP method

Large Example: Six coancestry restrictions

Effect of number of coancestry constraints on the size of the problem

SDP increases by n (number of candidates) QP increases by 1

Conclusions

- A OCS method formulated as quadratic programming
- Allow the inclusion of several restrictions on coancestry
- Like SDP, it guarantees that results are optimum
 but expected to be more computationally efficient

RPS (AKA Langrange multiplier method)

Semidefinite programming method

Solve it using a general purpose software

The derivative

Absorbing the slack variables

$$\begin{bmatrix} \nabla_{\mathbf{c}}^{2}\mathcal{L}(\dots) & -\mathbf{s} & -\mathbf{d} & -\mathbf{I}_{(nxn)} & \mathbf{I}_{(nxn)} & \mathbf{\mathcal{H}}_{(nxp)} \\ -\mathbf{s}' & 0 & & & \\ -\mathbf{d}' & 0 & & & \\ -\mathbf{I}_{(nxn)} & & -\mathbf{\Lambda}_{\underline{u}}^{-1}\mathbf{Y}_{\underline{u}} & & \\ \mathbf{I}_{(nxn)} & & & -\mathbf{\Lambda}_{\underline{u}}^{-1}\mathbf{Y}_{\overline{u}} \\ \mathbf{\mathcal{H}}_{(pxn)}' & & & & -\mathbf{\Lambda}_{j}^{-1}\mathbf{Y}_{j} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{c} \\ \Delta \lambda_{s} \\ \Delta \lambda_{d} \\ \Delta \lambda_{d} \\ \Delta \lambda_{d} \\ \Delta \lambda_{u} \\ \Delta \lambda_{\overline{u}} \\ \begin{bmatrix} \Delta \lambda_{1} \\ \vdots \\ \Delta \lambda_{p} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{c} \\ \mathbf{r}_{s} \\ \mathbf{r}_{d} \\ \mathbf{r}_{d} - \mathbf{\Lambda}_{\underline{u}}^{-1}\mathbf{r}_{\lambda\underline{u}} \\ \mathbf{r}_{\overline{u}} - \mathbf{\Lambda}_{\overline{u}}^{-1}\mathbf{r}_{\lambda\underline{u}} \\ \mathbf{r}_{\overline{u}} - \mathbf{\Lambda}_{\overline{u}}^{-1}\mathbf{r}_{\lambda\overline{u}} \\ \begin{bmatrix} \Gamma_{y_{1}} \\ \vdots \\ \Gamma_{yp} \end{bmatrix} - \mathbf{\Lambda}_{j}^{-1} \begin{bmatrix} r\lambda_{y_{1}} \\ \vdots \\ r\lambda_{yp} \end{bmatrix} \end{bmatrix}$$

The interior point method

- Newton Rapson can lead to unfeasible solutions
- Keeping to the interior point
- Central path
 - Corrector (how much to move to central path
 - Predictor
- The algorithm

The Newton Rapson method

The Jacobian matrix

Value of τ and the complementarity measure (μ)

- Complementarity measure : μ =mean($\lambda * y$)
 - As $\mu \rightarrow 0$: θ closer to optimum solution
- $\mu_{i+1} < \mu_i$: θ_{i+1} is better solution to θ_i
- Size of τ related to relative value between μ_{i+1} and μ_i
- $\mu = \text{mean}(\lambda * y)$ $\mu \to 0$: θ closer to optimum
- $\mu_{i+1} < \mu_i$: θ_{i+1} is better solution to θ_i
- τ related to relative value between μ_{i+1} and μ_i

Large Example: Two genomic region of interest

The OCS problem

Min
$$h(\mathbf{c})$$
 $h(\mathbf{c}) = \begin{cases} -\mathbf{e}'\mathbf{c} \\ \mathbf{c}'\mathbf{G}\mathbf{c}/2 \end{cases}$ s.t. $\mathbf{c}'\mathbf{G}_{j}\mathbf{c} \le 2\mathbf{F}_{j}^{*}, \ j = 1, p$ $\mathbf{s}'\mathbf{c} = 0.5$ $\mathbf{c} \ge \underline{u}$ $\mathbf{d}'\mathbf{c} = 0.5$ $\mathbf{c} \le \overline{u}$

Lagrange function

$$h(\mathbf{c}) - \lambda_s(\mathbf{s}'\mathbf{c} - 0.5) - \lambda_d(\mathbf{d}'\mathbf{c} - 0.5) - \lambda'_{\underline{u}}(\mathbf{c} - \underline{u}) + \lambda'_{\overline{u}}(\mathbf{c} - \overline{u}) + \sum_{j=1}^p \lambda_j(\mathbf{c}'\mathbf{G}_j\mathbf{c} - 2\mathbf{F}_j^*)$$

